Environmental sniffing: robust digit recognition for an in-vehicle environment

نویسندگان

  • Murat Akbacak
  • John H. L. Hansen
چکیده

In this paper, we propose to integrate an Environmental Sniffing [1] framework, into an in-vehicle hands-free digit recognition task. The framework of Environmental Sniffing is focused on detection, classification and tracking changing acoustic environments. Here, we extend the framework to detect and track acoustic environmental conditions in a noisy-speech audio stream. Knowledge extracted about the acoustic environmental conditions is used to determine which environment dependent acoustic model to use. Critical Performance Rate (CPR), previously considered in [1], is formulated and calculated for this task. The sniffing framework is compared to a ROVER solution for automatic speech recognition (ASR) using different noise conditioned recognizers in terms of Word Error Rate (WER) and CPU usage. Results show that the model matching scheme using the knowledge extracted from the audio stream by Environmental Sniffing does a better job than a ROVER solution both in accuracy and computation. A relative 11.1% WER improvement is achieved with a relative 75% reduction in CPU resources.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid metaheuristic algorithm for the robust pollution-routing problem

Emissions resulted from transportation activities may lead to dangerous effects on the whole environment and human health. According to sustainability principles, in recent years researchers attempt to consider the environmental burden of logistics activities in traditional logistics problems such as vehicle routing problems (VRPs). The pollution-routing problem (PRP) is an extension of the VRP...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Robust Integral Sliding-Mode Control of an Aerospace Launch Vehicle

An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Vehicle Logo Recognition Using Image Matching and Textural Features

In recent years, automatic recognition of vehicle logos has become one of the important issues in modern cities. This is due to the unlimited increase of cars and transportation systems that make it impossible to be fully managed and monitored by human. In this research, an automatic real-time logo recognition system for moving cars is introduced based on histogram manipulation. In the proposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003